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Recent advances in human-computer integration

(HInt) have focused on the development of human-

machine systems, where both human and machine

autonomously act upon each other. However, a key

challenge in designing such systems is augmenting

the user’s physical abilities while maintaining their

sense of self-attribution. This challenge is particularly

prevalent when both human and machine are capable

of acting upon each other, thereby creating a human-

machine mutual action (HMMA) system. To address

this challenge, we present a design framework that is

based on the concept of transparency. We define trans-

parency in HInt as the degree to which users can self-

attribute an experience when machines intervene in

the users’ action. Using this framework, we form a

set of design guidelines and an approach for design-

ing HMMA systems. By using transparency as our fo-

cus, we aim to provide a design approach for not only

achieving human-machine fusion into a single agent,

but also controlling the degrees of fusion at will. This

study also highlights the effectiveness of our design ap-

proach through an analysis of existing studies that de-

veloped HMMA systems. Further development of our

design approach is discussed, and future prospects for

HInt and HMMA system designs are presented.

Keywords: human-computer integration, transparency,

human-machine mutual action, human augmentation

1. Introduction

Over the ages, tools have been designed with consider-

ation to the task and user. In some cases, people have

learned to use tools as well as they can use their own

body, thereby embodying the tools. Tools have evolved

into machines equipped with intelligence. This new class

‡. The authors with † mark contributed equally to this research.

of tools has opened up a new avenue for human augmen-

tation which offers unprecedented capabilities: human-

computer integration (HInt) [1].

In HInt, one of the major goals for designers is to con-

struct systems where users and machines act as a single

fused agent, which results in a human with augmented

physical abilities. Here, the term “machine” refers to an

artificial agent equipped with sensors to obtain informa-

tion regarding the human’s behavior and the environment,

computers to process the information and make decisions,

and actuators to act upon the human and the environment.

The machine may be physical (e.g., robotic arms [2], ex-

oskeletons [3–5], and electric muscle stimulation [6, 7]),

as might first come to mind. Alternatively, it may be vir-

tual (e.g., an avatar in a virtual reality environment [8, 9]);

it may implement sensing in a virtual world and act on vir-

tual objects to indirectly affect human behavior. The main

difference between traditional tools and machines is the

latter’s ability to act autonomously. Thus systems seeking

to achieve HInt can contain more than one independent

agent, which results in a system with mutual action be-

tween human and machine. We refer to such systems as

human-machine mutual action (HMMA) systems, and we

believe that these systems are the future of fused human-

machine systems.

The machine’s independence results in a new design

challenge that is not present in traditional tools, i.e., de-

signing HInt systems to augment the user’s ability while

allowing the user to attribute actions to themselves [10].

Owing to the machine’s agency, it is capable of acting

without human involvement. This can cause it to act out-

side of the user’s intentions, causing the user not to at-

tribute the system output as their own action. For exam-

ple, if the machine intervenes in the user’s action, the user

may notice the intervention and may not self-attribute the

fused action (i.e., the actual outcome including the inter-

vention). One approach to solving this particular issue is

to reduce the intervention so as to be unnoticeable. How-

ever, this presents another challenge. If the intervention
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is too small, the user’s abilities cannot be effectively aug-

mented. Thus, there is a trade-off between augmentation

and the attribution of agency. Therefore, the key chal-

lenge for designers is to manage this trade-off and im-

plement HInt systems which augment the user’s abilities

while maintaining their sense of self-attribution during

fused actions.

Herein, we present approaches and a design framework

to tackle this challenge based on the concept of human-

machine transparency. The history of transparency as an

analogy to assist in design is long and diverse. In the

field of human-computer interaction (HCI), transparency

is used as a metaphor to qualitatively describe how the

interface is experienced by the user [11]. For instance,

in haptic interfaces, transparency refers to how notice-

able the interface is to the user when it is not actively

presenting any stimulus. This measure is widely used as

an indicator to evaluate the performance of a device [12].

Namely, the less noticeable the interface is when not in

use, the more transparent the interface is to the user, and

the better the device. We draw from these previous works

that discuss transparency in their respective domains to

construct a novel framework to guide the design of HInt

systems.

In this paper, we define transparency in HInt as a no-

tion of how much users are made aware of the machine

side of the human-machine system. Thus, a highly trans-

parent system is one where the users feel that they are

directly interacting with the environment, without being

made aware of the presence of any machines and their in-

tervention. By forming a design framework around this

concept of transparency, we are able to identify the extent

to which the machine can intervene in the user’s actions

without compromising how much the user self-attributes

the experiences. Designing around the concept of trans-

parency provides a direct way of assessing how well a

HInt system will integrate.

To assist in applying our concept, we suggest that trans-

parency in HInt can be subdivided into two types, which

can each be linked to one of the more traditional uses of

transparency as an analogy:

1. Perceptual transparency: How users feel when

achieving direct sensory access to the target informa-

tion, even with the mediation of sensory information

by the machine.

2. Action transparency: How users feel the sense of

agency for outcomes, even with intervention from a

machine.

While not independent (e.g., high perceptual transparency

contributes to improving action transparency), this sub-

division provides a useful perspective of the aspects of

system design that must be considered to achieve sys-

tem transparency. Thus, along with providing the trans-

parency design framework, we propose a transparency-

based design approach for HInt systems which places an

emphasis on controlling transparency in HMMA systems

(Fig. 1).

To elucidate our design approaches, we first provide a

review of the traditional transparency to which our con-

cepts are linked (haptic transparency and sense of agency,

respectively), and we describe the components of our

transparency-based framework to which they correspond.

Then, we describe guidelines to design transparency in

a system and what some of the objectives of designing

transparency may be. Finally, we introduce design ap-

proaches for HMMA systems based on the framework

of transparency. We conclude with concrete examples

of previous works which resemble HMMA systems and

discuss future directions that can be developed using our

concept, including free and continuous control of trans-

parency to achieve degrees of fusion in HMMA systems.

We envision that our design framework will pave the way

for designing HMMA systems, i.e., a new class of human-

machine systems in which designers can control how the

user embodies the machines.

2. Perceptual Transparency

We begin by discussing system transparency in terms

of human perception. The idea of perceptual transparency

is, in and of itself, not a new concept. Transparency has

been widely discussed in the field of interface design, par-

ticularly regards to haptics [12–14]. In the field of hap-

tics, transparency refers to the feeling that there is no

interface. When touching a remote/virtual environment

through a highly transparent interface, the interface con-

ceals its presence and allows the user to have direct sen-

sory access to information. This concept has been widely

used as a measure of performance in the domain of hap-

tics. Thus, we first review how the concept of haptic trans-

parency before building upon existing definitions of trans-

parency to propose a new generalized definition for per-

ceptual transparency, i.e., the degree of congruency be-

tween sensory predictions and perceived sensations.

2.1. Transparency in Haptic Interfaces

The transparency of an interface, particularly in the

context of a force presentation, is commonly referred to

as haptic transparency, and is widely used as an indicator

for evaluating the performance of a device [12–14]. Per-

fect haptic transparency is defined as the state in which the

impedance on the operating side and that on the side of

the remote or virtual environment are the same [12]. For

example, a haptic interface with high haptic transparency

is characterized by low inertia and high back-drivability;

thus, it reproduces the sensation of not touching anything

in conditions where no forces should be presented [15].

Given a perfectly transparent haptic interface, the user

should perceive forces only when touching a virtual or

remote object, and when touching the object, experience

haptic sensations identical to those that they would ex-

perience if they were actually touching the object. In

contrast, a haptic interface with low haptic transparency

would make the user aware of the device at all times. The
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Fig. 1. Transparency-based design framework for human-computer integration (HInt), where humans and machines become an

integrated agent. We define two major aspects of transparency in HInt, which directly expand on previous studies: perceptual

transparency and action transparency. The former, 1©, refers to how strongly users feel that they are directly accessing sensations;

the latter, 2©, refers to how strongly users feel a sense of agency in human-machine action outcomes. Then, based on these concepts

of perceptual and action transparency, we describe approaches to achieve transparency in human-machine mutual action. These

approaches, 3©, seek to design two key aspects of the machine: its presence and its intervention.

user would feel resistance owing to inertia and gear fric-

tion when operating the end-effector, and they would feel

forces where there should be none.

The conditions and specifications required to achieve

perfect haptic transparency for humans were identified

by Millet et al. [16]. Their specifications, defined based

on the absolute threshold of human perception, are ex-

tremely difficult to achieve. Although a number of stud-

ies have been conducted to optimize mechanical systems

and control based on fast sensing to achieve high trans-

parency (e.g., [17]), these studies have yet to achieve per-

fect transparency with current technology. Another ap-

proach, encounter-type haptic presentation, has success-

fully achieved perfect transparency in limited contexts.

Encounter-type haptic presentation is designed such that

physical contact occurs between the user’s body and hap-

tic presentation device only when the user is touching a

virtual object [18, 19]. Because there is no contact when

no contact is supposed to be presented, this approach

achieves perfect transparency until the moment of con-

tact. However, achieving perfect transparency after con-

tact is made remains an open issue. Thus, the pursuit of

transparency in haptics research has focused on the chal-

lenge of providing a transparent window for humans to

access objects in an information space with haptic sen-

sations through machines. Therefore, the idea of haptic

transparency is, and remains, an important issue and mea-

sure in the domain of haptic interfaces. However, we sug-

gest that the metaphor of transparency can be extended

beyond the domain of haptics, and that it can be general-

ized as a measure of perceptual system performance.

2.2. Perceptual Transparency in Human-Computer

Integration

As mentioned at the beginning of this section, we

propose a new measure for a system’s perceptual trans-

parency in HInt. This transparency is defined as the ex-

tent to which users can feel that they are directly access-

ing a target sensation with the information. This can

be achieved by matching a predictive model for human

senses with the actual senses as perceived.

In each situation shown in Fig. 2, a human perceives

an object through a system (computational layer). The

first three situations demonstrate how a system can ap-

pear transparent to the user. In the first situation, there is

no system intervening between the human and the envi-

ronment, thereby enabling the human to perceive the ob-

ject directly, as shown in Fig. 2(a). Clearly, in this case,

there is no system to perceive between the human and the

object; thus, the computational layer is transparent. In
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Fig. 2. Perceptual transparency in human-computer integration. Perceptual transparency can be realized through various conditions

of the environment, perceived feedback, and prediction.

the second situation, a computational layer exists, but it

presents a human with a sensation that is consistent with

the original condition, as shown in Fig. 2(b). In this case,

the system becomes transparent, as there are no cues in-

dicating its existence of the system. In the third situation,

the system intervenes significantly, and it changes the

original object (a cylinder) into an octahedron, as shown

in Fig. 2(c). However, if the octahedron is what the hu-

man expects to perceive (i.e., the perceived sensation is

within the range predicted by the human), the system is

perceptually transparent to the user.

The next two situations demonstrate how a system can

appear non-transparent to the user. In the fourth situation,

the system attempts to replicate a sensation that is con-

sistent with the original condition; however, it does not

have sufficient specifications (dynamic range, resolution,

drive frequency, etc.) to do so, as shown in Fig. 2(d). In

this case, the human perceives the presence of the sys-

tem. This situation is similar to what occurs in haptic

transparency (i.e., insufficient performance to sufficiently

replicate tactile sensations). In the fifth case, the sys-

tem presents an octahedron when the user knows that the

original object is a cylinder, as shown in Fig. 2(e). In

this case, the user becomes aware of the computational

layer because of the mismatch between their prediction

and perception. This case shows that, even if the sys-

tem is capable of replicating sensations to a high degree,

if the sensory presentation differs from the human’s ex-

pectation, the human will notice the system’s interven-

tion and become aware of its presence. This can occur in

multimodal situations, for example, when a presented tac-

tile stimulus does not match the visual stimulus. Whereas

multimodal mismatches can degrade transparency, multi-

modal congruency can improve the transparency of a sys-

tem. For example, Shifty creates an immersive experi-

ence by matching tactile sensations to vision, and predict-

ing the sensations that correspond to a visually presented

tool [20].

Finally, the last situation demonstrates how context can

temper expectations and cause the computational layer to

appear transparent. In this situation, the system is unable

to present a clear perception of the original object to the

user (e.g., owing to low specifications). Thus, the sys-

tem presents an unclear (e.g., foggy) representation of the
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object to the user. However, the user is in an unclear con-

text (e.g., in a fog); therefore, they expect their perception

of the object to be unclear. As a result, the computational

layer appears transparent to the user, as shown in Fig. 2(f).

Namely, the unclear nature of the sensations that the

computational layer presents to the user is attributed to the

context (e.g., environment, nature of the object) instead of

the system, thereby rendering the system transparent. In

concrete terms, this can refer to attributing the fuzziness

of a video feed to environmental noise, such as a literal

snowstorm, instead of signal transmission noise. Human

perceptual characteristics, such as Weber-Fechner’s law,

can also affect the tempering of expectations and percep-

tions. Weber-Fechner’s law states that when the intensity

of a stimulus is strong, the noticeable difference in the

stimulus increases. Thus, when the stimulus intensity is

strong, the range of sensations that are judged to be the

same also increases. As a result, a wider range of sen-

sations may be deemed to be “within expectations” when

the stimulus is stronger. Therefore, it is necessary to con-

sider the possible states of both humans and the environ-

ment when designing a system and its interventions for

transparency.

By formulating a generalized concept for perceptual

transparency, we broadened the scope of discussion from

a HInt component scale (i.e., haptic transparency) to a

HInt system scale. Using our definition of perceptual

transparency, it becomes possible to discuss how the pres-

ence of a machine constructed from multimodal stimuli

can be made transparent to the human user. If sensations

are relayed to the user according to their expectations,

the user may feel that the machine is not present and/or

not intervening in their perceptions or actions. Achieving

transparency in the machine’s presence in this way can

result in a deeper level of HInt and improvements in the

subjective experiences of human augmentation. For ex-

ample, with sufficient transparency, users may experience

fusing with the machine, where they deem the machine as

part of themselves. Alternatively, sufficient transparency

may make the user unaware of the machine and its inter-

ventions. In this case, users would have no choice but to

attribute their augmented abilities to themselves, leading

to a strong sense that their abilities have been augmented.

Thus, the concept of perceptual transparency can serve as

a valuable lens through which HInt system designers can

view their systems.

3. Action Transparency

Perceptual transparency should be considered in HInt

design, regardless of the state of the human activity. For

example, perceptual transparency should be considered in

both passive (e.g., static sensory experiences, passive mo-

tions) and active (e.g., voluntary actions) conditions.

However, perceptual transparency is not the only type

of transparency that must be considered in HInt. In active

conditions, an essential factor of transparency is the user’s

sense of agency in the outcomes, including intervention

from the machine. Thus, we define action transparency

as a subdivided component of transparency regarding the

user’s sense of agency, as mentioned in Section 1.

According to studies on motor learning and perception

in the neurocognitive domain, a sense of agency is closely

related to the motor learning process in the internal model

of the brain [21–23]. In the internal model, the compari-

son between efferent information (motor predictions gen-

erated by an individual’s internal model) and afferent in-

formation (i.e., sensory feedback resulting from the actual

outcome) is used to optimize prediction [24–27]. Sev-

eral studies have suggested that this sensorimotor compar-

ison process underlies the sense of agency [22, 23, 28, 29].

Therefore, understanding the mechanisms of motor learn-

ing and perception is important when designing the user’s

sense of agency in HInt systems.

Thus, we first review previous studies on the mecha-

nism of motion learning in the internal model and the lat-

est accounts of the sense of agency. Then, we describe

the definition of action transparency based on account

of the sense of agency and design techniques to modify

the user’s action using computational interventions while

maintaining action transparency.

3.1. Mechanism of Human Motor Systems

Humans are adept at controlling their bodies both

quickly and accurately. Theories of motor control pos-

tulate that this is because the brain has internal models

that it uses to predict sensory action feedback and gen-

erate the motor commands needed to realize the desired

action a priori. The mechanisms of motor control and

learning have been discussed over several decades. Much

of this discussion is based on the concept of comparison

processes, which update the internal models [24–27]. The

internal models in the motor system can be considered to

be a type of control system. The model receives the de-

sired state, in the form of an explicit goal, as input and

generates motor commands to achieve this based on past

experience.

Previous studies proposed that this system consists of

two primary types of models: forward models and in-

verse models. Forward models allow the motor system

to predict sensory feedback by using efference copies of

the motor command. Inverse models allow the motor sys-

tem to determine the motor commands that are necessary

to achieve the desired state. These models are dynami-

cally adaptable to various contexts. For example, motor

systems can acquire both forward and inverse models that

include the control of external objects, such as tools, such

that they are considered an extension of the body [30–32].

Internal models are continuously updated and adapted

(e.g., improving accuracy of controls, prediction and op-

timizing to the current contextual state) by different com-

parator mechanisms [33, 34]. In general, a comparator in

a feedback control loop allows a system to improve its

functionality by calculating the error between the desired

state and actual state, which is estimated based on sen-

sory feedback. This error is then used to update the con-
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Fig. 3. Model detailing the mechanisms of the implicit and explicit sense of agency. The depicted model was developed by

considering the two-step account of the sense of agency (i.e., the feeling of agency and the judgement of agency, as proposed by

Synofzik et al. [35, 36]), other recent accounts of the sense of agency [37–39], and the comparator mechanism [33–35]. At the

sensorimotor level, several comparators are used to update the internal models: (a) feedback error monitoring, (b) central error

monitoring, and (c) optimization of prediction. Whenever there is any intervention in the human’s action, (d) the sensory receptors

receive both external afference signals and the reafference signals of the action. At the cognitive level, the attribution of agency

is judged based on the integration and weighting of various cues. After the judgment, the cognition for the attribution of agency

and context is retained as prior information, which may influence the internal information (e.g., prediction in internal models and

intention) and external information (e.g., perception and cognition of actual outcome) on both the sensorimotor and cognitive levels

thereafter. Namely, the human motor system (i.e., motor controls and learning) and the sense of agency interact with each other.

trol loop to minimize the discrepancy. The same mech-

anism is proposed to exist in the human motor system

(Fig. 3(a)). Thus, the predicted state generated by the

forward models is used in two types of comparison pro-

cesses. First, it is used to make fine adjustments during

motion. Comparisons between the predicted state and the

initial desired state during motion enable fine adjustments

to ongoing motor commands before reafferent feedback

from the movement is available (Fig. 3(b)). Second, it is

used in the comparison between the predicted state and

actual sensory feedback to optimize the prediction model

and cancel out or attenuate the sensory feedback of the

self-generated reafference (Fig. 3(c)) [40–43]. However,

the importance of the comparator, the internal models, and

the predictions they generate are not limited to enhancing

motor performance. Many previous studies argue that the

congruency between the prediction generated by the in-

ternal model and actual outcome, as detected by the com-

parator, is an essential clue in the attribution of the sense

of agency [21, 23, 29, 44].

3.2. Implicit and Explicit Sense of Agency

A sense of agency refers to the feeling that “I am

the agent causing the action” [45]. Over the last sev-

eral decades, two different accounts have been proposed

for explaining the neurocognitive underpinnings of the

sense of agency. One is the implicit sense of agency,

which is discussed with an emphasis on the comparison

process conducted using outputs of the internal model,

as mentioned above. The other is the explicit sense

of agency, which is discussed with an emphasis on the

cognitive judgement obtained by a postdictive inference,

which is made through the integration of various cues [46,

47]. However, when considered independently, these two

paradigms are unable to produce a complete picture of the

sense of agency.

Several studies have argued the distinction of these lev-

els of the sense of agency (i.e., implicit and explicit) [35–

39]. An influential account by Synofzik et al. proposed

a two-step account of agency that combined the implicit

and explicit sense of agency [35]. In their new account,

they named the implicit sense of agency as the feeling

of agency (FoA) and the explicit sense of agency as the

judgement of agency (JoA) (Fig. 3). According to their

argument, first, the FoA is represented at the sensorimo-

tor level (Fig. 3 lower). At this level, the actual sen-

sory feedback of motion is merely classified as being self-

caused or not self-caused, based on the comparison with

the predicted sensory feedback. Therefore, there is no

external attribution at this level (e.g., a feeling that “my
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body movement was caused by a robotic actuator”). If

no sensorimotor mismatch is detected, a first-person ac-

tion experience is achieved in the ongoing flow of action,

and the experience of the sense of agency is obtained and

withheld from further processing. However, if any senso-

rimotor mismatch is detected, the JoA is formed. This is

an interpretative judgement of being the agent in an ac-

tion on the explicit, cognitive level (Fig. 3 upper). At this

level, attribution of the agency is processed by postdictive

inference, which is based on the integration and weighting

of various cues. These include not only sensorimotor cues

but also explicit internal cues (e.g., intention, goal, antici-

pation based on priming), cognition of the actual outcome

as one of the external cues, and other external cues (e.g.,

contextual cues). If it cannot self-attribute at the cognitive

level judgement, the motion is interpreted as being caused

by factors outside the self.

Furthermore, according to this framework, the sensori-

motor and conceptual levels are continuously integrated,

and they interact with each other. The FoA (i.e., the im-

plicit sense of agency) generally serves as the reliable and

robust cue for explicit inference at the cognitive level. In-

versely, JoA (i.e., the explicit sense of agency) as well

as contextual cues can change priors on the sensorimo-

tor level. Furthermore, several recent studies have re-

ported that obtaining an explicit sense of agency helps to

improve motor control. Kasahara et al. investigated the

effect of the sense of agency on learning by examining

how preemptive muscle contraction by electrical muscle

stimulation (EMS) affected the reaction time (RT) of par-

ticipants in the task of pressing a button in response to

visual stimuli [48]. They showed that RT improved af-

ter the participants performed muscle-driven learning in

advance while maintaining a sense of agency. However,

the improvement in RT was not significant when the EMS

was too early and a sense of agency was not maintained.

Matsumiya also investigated the correlation between an

explicit sense of agency and control of eye movement

while visually tracking hand movements [49]. Their re-

sults showed that improvements in the time taken to ini-

tiate eye movements are correlated with an explicit sense

of agency in the motion of the hand. These findings sug-

gest that the acquisition of the sense of agency affects the

learning process of the internal model.

3.3. Action Transparency in Human-Computer

Integration

Our above review of the mechanism of the human mo-

tor system and subsequent discussion of the sense of

agency have shown that it is important to achieve a sense

of agency when performing motor actions. When design-

ing HMMA syatems to achieve HInt, it is important to

maintain a sense of agency when the computer intervenes

in human action. Maintaining a sense of agency con-

tributes to driving learning and adaptation and improv-

ing the accuracy of the human-computer co-action. Con-

versely, compromising the user’s sense of agency may

degrade the overall capability of the HInt system, as the

user may not be able to make use of their innate abilities

(e.g., predictive motor control). Furthermore, compromis-

ing the user’s sense of agency in individual and collective

work can also lead to a lack of motivation for actions be-

cause it is difficult to feel a sense of accomplishment [50].

However, it is challenging to maintain the sense of agency

in systems where the computer assists and augments the

user’s behavior (i.e., when the user experiences action

outcomes that are different from the original physical ac-

tion). For example, Coyle et al. reported that, when a user

manipulates a mouse cursor, assistance techniques such

as changing the cursor’s speed can have a significant im-

pact on the user’s sense of agency [51]. Therefore, it is

necessary to identify the extent to which the machine can

intervene in the user’s actions without compromising the

user’s sense of agency.

Here, we propose that action transparency should be

a key component in designing situations in which the

user can achieve a sense of agency in HMMA. As men-

tioned in Section 1, action transparency refers to the de-

gree to which users feel a sense of agency in their action

outcomes, even with the intervention from the machine.

Thus, based on the discussion presented above, to design

an effective and unnoticeable intervention, it is crucial to

consider both factors that influence the implicit sense of

agency (e.g., sensorimotor discrepancies by action inter-

vention) and the explicit sense of agency (e.g., contextual

cues). Namely, designers must ensure either that the sen-

sorimotor discrepancies are small or that there are suffi-

cient contextual cues that will ensure that the user expe-

riences a sense of agency. However, this implies that if

there are enough reliable contextual cues for the user to

achieve a sense of agency, it is possible to perform larger

interventions, which would typically result in large senso-

rimotor discrepancies, without the user noticing.

Many previous studies in the areas of human augmenta-

tion and cognitive psychology have studied methods that

intervene in the users’ movements without compromising

their sense of agency. The techniques to achieve percep-

tual transparency that were discussed in the previous sec-

tion form a large body of this work. They contribute to the

achievement of action transparency because the percep-

tion of sensory feedback is used for sensorimotor integra-

tion and comparison in the human motor system. Addi-

tionally, the transparency of the machine’s presence may

provide contextual cues for explicit judgement. For exam-

ple, when a machine is sufficiently hidden, users are more

likely to self-attribute actions because there is no one else

to attribute the cause of motion to.

More generally, many studies have discussed that

spatio-temporal congruency between the user’s prediction

and the actual outcome is important for the attribution of

the sense of agency [42, 52–54]. However, many stud-

ies have also reported that the spatio-temporal discrep-

ancy can be tolerated within a particular range [8, 28, 53,

55–57]. Moreover, it is known that the action-outcome

models dynamically change through learning and adapta-

tion [8, 58–60]. These results suggest that we can change

the tolerance range of temporal offset and spatial mis-
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match by adapting to the condition. Additionally, consis-

tency with the user’s intentions has a significant impact on

the user’s sense of agency. For example, it was observed

that users are less likely to notice interventions that are

consistent with their intention (e.g., assistance) than those

that are inconsistent (e.g., interference) [61].

In this section, we considered the latest concepts on the

sense of agency, and we discussed action transparency for

the case where the machine intervenes in the user’s ac-

tion. It is notable that the process of the sense of agency

can be divided into two levels, and the levels interact with

each other. The key aspect is that a variety of contextual

cues, as well as the congruency between the action and

the actual outcome, are involved in the judgement at the

cognitive level. Furthermore, achieving the user’s sense

of agency may contribute to driving their motor learn-

ing. These points emphasize that designers of HInt sys-

tems need to consider the context as well as the human-

machine interaction.

4. Generalized Framework of Transparency

In Section 2, we introduced the idea of transparency as

the congruency between expectations and reality by dis-

cussing the transparency of perception. We then discussed

action transparency in Section 3 to describe how the trans-

parency of a system can vary depending on two factors:

(1) the difference between the user’s predictions gener-

ated by their internal model and the actual outcomes they

experience (sensory cues), and (2) contextual cues which

imply that the result they experience is what they should

expect (e.g., prior information about the environment that

causes the user to pay less attention to the machine and

its intervention). Furthermore, we discussed how a sense

of agency could be obtained in two ways, based on the

two-step account of agency. First, an implicit sense of

agency can be obtained by sufficiently high congruency

between predictions and sensorimotor feedback. Then, if

insufficient congruency is achieved, people can be made

to judge that they should have an explicit sense of agency

through contextual cues. However, it should be noted that

if congruency is too low, no amount of contextual cues

would be able to induce a sense of agency.

Herein, we discuss transparency in a general context to

present a framework upon which transparency-based de-

sign approaches can be built. We present this framework

in the form of a map showing the types of transparency

that can exist in a HInt system, as shown in Fig. 4. The

map was constructed with the assumption that the mech-

anism behind transparency works similarly to the two-

step account of agency. Namely, transparency is primarily

achieved by a high degree of congruency between predic-

tions and feedback and secondarily by contextual cues.

By drawing this map, we observe that there are three do-

mains of transparency, as follows:

(i) Unquestionably transparent domain: the domain in

which the system is always transparent to the user

Fig. 4. Generalized framework of transparency. We de-

fined three domains based on sensory cues: (i) unquestion-

ably transparent, (ii) ambiguously transparent, and (iii) non-

transparent.

(i.e., congruency is sufficiently high).

(ii) Ambiguously transparent domain: the domain in

which the system’s transparency depends on the

contextual cues (i.e., congruency is insufficient to

induce transparency by itself).

(iii) Non-transparent domain: the domain in which the

system is always non-transparent (i.e., congruency

is significantly low).

The location of the HInt system on this map depends on

all parts of the system (i.e., the machine, the human, and

the environment within which they exist).

Previous works typically do not distinguish between

domains (i) and (ii), or between (ii) and (iii). In most

cases, systems are distinguished as transparent or non-

transparent based on cognitive judgements. This is owing

to the mixed attribution of the non-transparent nature of

the systems to the cognitive and sensory aspects of trans-

parency, as was the case with the traditional account of

the sense of agency. However, with the advent of deeper

and more advanced HInt systems for human augmenta-

tion, there is a need to design in domain (ii) instead of

domain (i) or (iii).

Working in domain (ii) is especially relevant for the

design of HMMA systems for human augmentation. In

the context of human augmentation, domain (iii) can refer

to systems that strongly intervene in the user’s actions to

achieve significantly better results. This is because strong

interventions typically result in a large gap between what

the user expects, based on their internal model, and the ac-

tual outcomes they perceive. In such cases, users cannot

attribute the actions made by the human-machine system

to themselves. This typically leads to a sense of irrele-

vance instead of a sense of self-attribution. Conversely,

domain (i) refers to systems that intervene minimally in

the user’s actions. While such systems allow the user

not to notice the machine and have a high sense of self-

attribution, it would also minimally augment the user’s
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capabilities. Thus, the design of systems in domain (ii),

where significant augmentation can be achieved while the

user still retains a sense of self-attribution, is necessary to

develop advanced HInt systems (e.g., HMMA systems).

5. Transparency-Based Design Approaches for

Human-Machine Mutual Action

Herein, we present transparency-based design ap-

proaches for designing HMMA systems. Our approaches

are directed towards developing systems for operating

in domain (ii) of transparency, in which significant hu-

man augmentation can be achieved while still allowing

the user to maintain a sense of self-attribution regard-

ing the machine-augmented actions. In particular, our

approach follows from our suggestion that system trans-

parency can consist of (passive) perceptual transparency

and (active) action transparency. Through our design ap-

proach, we suggest that transparency in HMMA systems

can be achieved by designing two aspects of the machine:

(1) machine presence and (2) machine intervention.

Machine presence refers to how strongly the user feels

that the machine is actively involved in the system and

how much it seems to influence any actions made by the

user. This sense of machine presence is formed based on

sensory information related to the physical existence and

movements of the machine. If the machine presence in-

creases, the user can recognize the machine as a candidate

for the attribution of action outcomes, and the user’s sense

of active involvement may be lost. By managing the ma-

chine’s presence and making it transparent, designers can

minimize alternative options for attribution, thereby en-

abling the user to attribute action outcomes to themselves

and experience augmentation with user self-attribution.

In contrast to machine presence, which can be experi-

enced even in passive states, machine intervention is only

experienced when the human and machine perform an ac-

tion. During machine intervention, the actions of the ma-

chine interact with the actions performed by the user to af-

fect the outcome. This intervention can enhance the user’s

motor ability and improve their performance. However,

because intervention modifies the user’s actions, it can

cause the actual outcome of the actions and the user’s pre-

dictions to differ, which degrades the user’s sense of self-

attribution. By making machine intervention transparent

(e.g., unnoticeable), designers can achieve augmentation

while maintaining user self-attribution.

In this section, we detail the approaches to control-

ling machine presence and intervention to achieve trans-

parency in HMMA systems. Even though the two notions

can be designed independently to some extent, they also

influence each other. To clarify how they interact, we first

present an interaction model and subsequently describe

the approaches to designing for machine presence and in-

tervention.
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Fig. 5. Interaction model describing a HMMA system. The

human’s internal control process is also shown. The high-

lighted arrows that represent outputs from the machine are

the human-machine interactions primarily related to the ma-

chine presence (dashed arrow from the effector) and inter-

vention (solid arrow from the effector).

5.1. Interaction Model

To clarify the composition of an HMMA system, the

interactions between the components, and the design fac-

tors that must be considered, we first introduce an interac-

tion model that describes the flow of information between

the human and machine (Fig. 5). The proposed model

consists of a human sub-system, machine sub-system, and

plant (the environment that the HMMA system interacts

with). The human sub-system includes sensory feedback,

self body control, and prediction models to perform mo-

tor actions. The machine sub-system can sense the output

of the human sub-system, and it affects the human’s mo-

tor actions. The plant is a generalized control target of

the entire system. The human performs motor actions by

planning motions based on sensory information and trans-

mitting motor commands to the musculoskeletal system.

The machine consists of a sensor that recognizes the hu-

man’s action, a controller to adjust its own action, and an

effector that can affect the human sub-system.

Both the machine presence and intervention stem from

the physical manifestation of the machine; thus, they are

clearly intertwined. However, they differ in the princi-

ples by which they affect a sense of self-attribution. The

machine presence is related to the existence of alterna-

tive targets for attribution, whereas machine intervention

is related to the congruency between action predictions

and outcomes. In the following subsections, we describe

approaches to design each of these concepts to achieve

augmentation with self-attribution.

5.2. Designing Machine Presence

A sense of machine presence is primarily generated by

the information received by human sensory receptors di-

rectly from the machine’s effector output (dashed arrow
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Discrimination Short-term learning Long-term learning

Without learning

Bringing the machine's behavior closer 

to the model the user already has

With learning

Bringing the user's model closer 

to the machine's behavior.

Absolute

Fig. 6. Approaches to designing machine presence. The approaches can be broadly categorized into approaches with and without

learning, and each category can be further separated into two approaches. The approaches without learning can be separated into

absolute and discrimination approaches, whereas approaches with learning can be separated into approaches that use short-term or

long-term learning.

from the effector in Fig. 5). A large machine presence

causes the user to overestimate the contribution of the ma-

chine, and it increases the likelihood that the outcome of

the action will be attributed to the machine. That is, in sit-

uations where a system designer wishes to attribute action

outcomes to the user, a large machine presence increases

the risk of any action outcome being misattributed to the

machine. By reducing this sense of presence, we aim to

achieve a state in which the outcome of motor actions can

be easily attributed to the user.

The machine’s presence can be reduced by increasing

the degree of congruency between the user’s predictive

model of the machine behavior (at all times, both dur-

ing and outside of interventions) and the sensory cues ob-

tained from the machine. Fig. 6 shows four approaches

to the design of machine presence. There are two main

classes of approaches to reducing machine presence: ap-

proaches without learning and those with learning. The

former approaches bring the machine’s behavior closer to

the predictions generated by the internal model that the

user already has. The latter approaches train the user’s

internal model to expect the machine’s behavior.

Approaches without learning focus on designing stim-

uli that the human receives from the machine to be be-

low the perceivable intensity of the user. There are two

main sub-categories to approaches without learning: the

absolute and discrimination approaches. The absolute ap-

proach sets stimuli below the absolute threshold of detec-

tion, and the discrimination approach sets stimuli below

the discrimination threshold.

In the absolute approach, the stimulus generated from a

machine is controlled to be below the threshold intensity

for human sensory detection. Example of this method in-

clude making a machine optically transparent or placing it

in a position where its motion cannot be seen by the user.

In the discrimination approach, the intensity of stimuli is

appropriately controlled so that changes in the intensity

are imperceptible. An example of this is to make the ma-

chine move so slowly that the user has difficulty detect-

ing the motion. Note that these two thresholds can also

change dynamically depending on the situation, the user’s

adaptation, and the relationship between stimuli from dif-

ferent modals.

A system that keeps all stimuli below these two thresh-

olds can eliminate the machine presence from the user’s

perception. However, in practice, it is difficult to control

all stimuli and achieve an imperceptible state. In this case,

approaches with learning can be an effective tool. This

approach takes advantage of the fact that stimulus infor-

mation that is consistent with the user’s prediction model

can be cognitively eliminated. By learning an appropriate

model, users can learn to ignore the machine’s presence.

For example, when we wear clothes, our skin is in con-

stant contact with the cloth, and we perceive the surface

texture and the mass of the cloth itself. However, most

of the time, we are unaware of these sensations unless we

pay attention to them.

Based on the results of previous studies [62, 63], we

assume that predictive models are formed in a two-step

process: (1) approximation by combining existing inter-

nal models that the users have acquired through previous

experience (short-term learning), and (2) optimization of

new internal models through repeated learning (long-term

learning). To reduce the presence of the machine in short-

term use, the former process is utilized by providing inter-

faces and machine behaviors that are consistent with the

user’s past experiences. An example of this is to provide

an interface through which the user can perform motor

actions in the same way that the biological body performs

daily movements (e.g., mapping human hand movements

to a machine’s manipulator movements). Approaches that

use long-term learning utilize an internal model that is ac-

quired by the user based on the statistics of the sensory

feedback. This model takes time to develop; however, it

has the potential to reduce the presence of the machine

in many situations. To facilitate model acquisition, the

system must be designed to withstand and be suitable for

long-term use (i.e., it must not impose significant physio-

logical or cognitive burdens).

We have described the approaches to designing ma-

chine presence. These approaches can be used alone or

in combination to design the desired machine presence.

Next, we describe the machine intervention, which is the

other aspect of HMMA that should be designed.

5.3. Designing Machine Intervention

Machine intervention refers to machine actions that af-

fect the user’s motor actions and their outcomes (solid ar-

row from the effector in Fig. 5). When executed prop-
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Fig. 7. Examples of relationships between the user’s pre-

dictions and the actual outcomes. Compared with state (a),

the user’s sense of agency is more likely to be maintained in

states (b) and (c).

erly, this intervention can augment the user’s abilities.

However, even when positive augmentation is success-

ful, badly designed interventions can leave users without

a sense that their abilities were augmented. Instead, it can

feel as if the machine is acting independently to achieve

the outcome. By designing machine interventions, we

aim to achieve an enhancement of the user’s action per-

formance while maintaining a sense of self-attribution.

As described in Section 3, previous studies have sug-

gested that humans have internal models to predict the

outcome of their own motor actions. This prediction is

formed internally by a human; it is probabilistic and con-

siders various types of uncertainty, including model un-

certainty, uncertainty regarding the environment, and un-

certainty of motor command execution. In this study, we

propose an approach to design interventions by sensing

the user’s state in real time and dynamically controlling

the amount of intervention based on the amount of uncer-

tainty the user expects (estimated from the user’s state).

The plot in the upper part of Fig. 5 shows the compari-

son made between the user’s internal prediction and ac-

tion outcome with spatio-temporal uncertainty. Appropri-

ate control of the relationship between the prediction and

outcome can guide the design of interventions in HMMA.

To illustrate how predictions and outcomes can be con-

trolled to maintain self-attribution, we present several

possible relationships between predictions and outcomes,

as shown in Fig. 7. In state (a), the system outcome, which

is a result of the machine’s interventions can be identi-

fied as being distinct from the user’s prediction, which

can compromise the sense of agency. In state (b), the

system outcome more closely matches the user’s predic-

tion through control of the intervention. Because the out-

come is reasonably congruent with the prediction, there

is a smaller probability that this type of intervention will

compromise the user’s sense of agency. In state (c), the

user’s prediction is more uncertain; however, the outcome

remains similar to that achieved in state (a). Owing to the

higher uncertainty in the user’s prediction, the user may

Fig. 8. PickHits is an HMMA prototype for augmenting

human throwing abilities.

accept the outcome as being within their prediction, and

they will maintain a sense of agency.

The changes from state (a) to (b) and from state (a)

to (c) represent two approaches to controlling interven-

tions. In the former, interventions are tailored to match

the user’s prediction. While this intervention has mini-

mal risk of compromising transparency for the user, it has

the disadvantage of a limited range of augmentation, and

it requires high machine performance, such as accuracy

and precision. In the latter, the user’s uncertainty is ac-

tively modulated to make the outcome acceptable for the

user. This approach has the advantage of enabling larger

or less precise interventions. However, designing the sys-

tem to generate excessive uncertainty in the prediction

can lead the human to deem the machine unpredictable,

which leads to a loss of transparency. Thus, a balance

between modulating uncertainty and designing interven-

tions that have an expected result is required to achieve

transparency in HMMA systems.

6. Examples of Transparency Design in

HMMA

Herein, we present concrete examples of HMMA sys-

tems that have been developed to achieve HInt, and we ex-

amine them through the lens of transparency to elucidate

the insights that our approaches and framework provide.

6.1. PickHits

Our first example, PickHits (Fig. 8), consists of a hand-

held device that acts as a release controller for the user’s

throwing action [64, 65]. The device is handheld, and it

has a button that allows the user to manually control the

release. The device’s movements are measured in real

time using optical motion capture cameras and an inertial

measurement unit sensor on the device to recognize the

user’s throwing motion. The device aims to control the

release timing of the user’s throwing action at the optimal

timing based on targets.

To reduce machine presence, PickHits was designed

to minimize any disturbance of the user’s movement by

employing a handheld device and a simple interface, in

which a button opens and closes the device’s gripper dur-

ing manual operation. In this system, the release timing

of the throw is controlled by the machine via intervention.
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Fig. 9. The Tight Game is an HMMA prototype designed to

augment human strength.

The uncertainty of the user’s prediction was designed

based on a delay between the user’s button push and the

release upon the opening of the gripper. The longer the

time interval between the button push and the release,

the higher the uncertainty according to Weber’s law. To

achieve release timing control with intervention from ma-

chine, the interval was set at approximately 75 ms, which

maintains a high sense of agency and maximally reduces

uncertainty. With this configuration, we achieved the con-

trol of the release timing without the user being aware of

it. This suggests that the throwing ability can be adjusted

implicitly by the machine. This shows that the user can

attribute the throwing experience with PickHits system to

themselves, and a high transparency is achieved.

6.2. The Tight Game

Our second example, the Tight Game (Fig. 9), is a pro-

totype that is used to investigate how human power can be

extended using tug of war as a test bed [66]. This system

consists of force sensors that are embedded in the rope and

machines, including high torque motors hidden behind the

users. Using the force sensors, the system observes how

each user applies force in real time, and it recognizes ac-

tions of users independently. Based on the recognized ac-

tion, the machines control the output power to assist the

user.

System configurations were designed to reduce the ma-

chine presence. The machine’s mechanism was designed

to have high backdrivability so that it does not interfere

with the user’s movement. To visually hide the machine, it

was placed behind the user. Additionally, a constant force

was applied from behind each user even when the inter-

vention was not performed. The magnitude of this con-

stant force was approximately 100 N. Because the forces

were in different directions, and they cancelled each other

out; thus, no assistance was performed in this state. This

force created a situation that made it more difficult for

the user to perceive the assistive force compared with the

case of applying the assistive force from a zero force state;

thus, this reduces the machine presence. For this interven-

tion, it was assumed that the uncertainty would decrease

depending on the amount of force exerted by the user [67].

A method was proposed to measure the amount of force

applied by the users in real time and control the rate of

change of the assistance according to the estimated uncer-

tainty. In addition, when the opponent user is assisted, the

assist is performed in synchronization with the opponent

user’s motion. Therefore, the perceived sensory feedback

does not deviate from the prediction, and it makes the ma-

chine presence transparent.

7. Future Prospects and Limitations

Herein, we discuss the future avenues of research as

clarified by our proposed concept of transparency, as well

as the limitations of our framework in its current form.

7.1. Free Transparency Control

The main focus of the two prototypes introduced in

Section 6 was how a high level of transparency may be

achieved in an HMMA system. However, the goal of

transparency design is not limited to achieving a high

level of transparency. For example, there are times

when states of low transparency are more beneficial than

high transparency states. Thus, the ultimate goal of

transparency-based design is not only to achieve high

transparency, but also to make it possible to freely control

the transparency. Here, we detail the idea of free trans-

parency control and its possible benefits through several

applications achievable through proper control of trans-

parency.

7.1.1. Driving Motor Learning

Our focus is to achieve high transparency, but not only

while users are using HMMA systems. When design-

ing training assistance systems, it is necessary to achieve

a high transparency state when the machine is removed.

When the user continues training with the machine’s as-

sistance for a long time, the user’s motor model may adapt

to the intervened state. If the amount of intervention is

too large in the late stages of training, the model after

learning may not match the unintervened physical body

motions. Conversely, if the amount of intervention is not

sufficient at the beginning of the training, the system may

not be able to effectively assist the user’s motor learning.

Hence, to enable successful motor learning, the system

needs to adjust the intervention dynamically to assist the

user’s training while ensuring that the user’s motor model

after training matches the unintervened motion.

A simple technique that may first come to mind is a

gradual reduction in the amount of assistance. For exam-

ple, Lammfromm et al. [68] developed a virtual reality

system for users’ learning juggling. They proposed an

initial ball speed slower than the realistic temporal con-

straints of juggling; this speed gradually increased based

on users’ performance in the virtual reality emvironment.

Such a design contributes to preventing sensorimotor con-

flicts in unintervened motions after training, while en-

abling the machine to effectively provide assistance at the

beginning of the training. However, note that it is essen-

tial to maintain a particular degree of the sense of agency

for movement during any training stage. This technique

can also be applied to rehabilitation and sports training.
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7.1.2. Notifications

Notifications provide an example of a system that tran-

sitions from high to low transparency. One specific ex-

ample is smartwatch notifications. When a user is ac-

customed to wearing a watch, it typically enters a high

transparency state (i.e., the user does not notice that they

are wearing a watch). The act of notifying the user, ei-

ther through vibrations or sounds, can be considered as

the transition from high to low transparency via a disrup-

tion in sensorimotor congruency. Given that the user is

instantly aware of the watch after the notification, this is

a jarring transition from a high to low transparency state,

and can cause discomfort. However, the careful design of

notifications can induce subtle and less-intrusive transi-

tions across the boundary. For example, in the “Mindless

Attractor” [56], a speaker’s voice is modulated to attract

the user’s attention without causing discomfort. In future

research, we will determine the relationship between no-

tification and transparency, and propose HMMA systems

using these notification techniques.

7.1.3. Presence of Others

When designers aim to intentionally create the presence

of others, a low transparency state may be more desirable

than a high transparency state.

For example, in our first prototype, we developed the

Tight Game [66] as a system in which the machine ex-

tends the user’s power implicitly. However, for a future

application, we may be able to design an intervention

method that makes the user feel the presence of another

user who is not there (e.g., virtual teammates and oppo-

nents, the telexistence of remote players) by using appro-

priately low transparency.

Moreover, it is a novel experience for users to execute a

mutual action with a machine while feeling the presence

of the machine as an autonomous agent. PickHits [64]

is also helpful in providing users with such experiences.

The handheld device is equipped with a button to release

the ball; however, the machine can release the ball au-

tonomously without the user pressing the button. Thus,

the user and machine are autonomously acting on each

other by playing their respective roles in the throwing se-

quence (i.e., the user swings their arm, and the machine

releases the ball). This explicit mutual action with the

machine provides the user with a unique experience, in

which they are not sure of the dominant agent.

This perspective can shed light on new HMMA pos-

sibilities by investigating whether machines can actually

produce the presence of others.

7.2. Limitations

Despite the current and potential future utilization of

our framework, there are some limitations that need to

be addressed. First, the proposed framework for trans-

parency is still in the conceptual stage, and a specific ex-

perimental evaluation has not yet been conducted. Addi-

tionally, we have not implemented concrete examples of

HMMA systems wherein both the human and machine ex-

ist as independent agents that are capable of autonomous

motor actions that simultaneously affect each other. To

address these limitations and provide more support for

our concept, our future work will include the implemen-

tation of examples, particularly of systems with dynami-

cally varying transparency, and evaluating them in terms

of the users’ subjective experiences. In addition, the de-

scriptions of the models in HMMA and the design frame-

work may not be complete. Thus, through further re-

search, we intend to update these descriptions. For in-

stance, other human brain principles (e.g., the free energy

principle [69, 70]) and new results from psychophysical

experiments may be relevant to our framework.

8. Conclusion

In this paper, we first discussed our design framework

for HInt, in which humans and machines become fused

agents. This design framework placed the analogy of sys-

tem transparency at its core. We focused our discussion

on two specific transparencies (i.e., perceptual and ac-

tion transparency), and we reviewed previous studies that

discuss the concepts on which our framework was built

(i.e., haptic transparency and the sense of agency). We

then proposed a set of guidelines to design transparency

in HInt. In these guidelines, we stated that achieving

high transparency was not the only possible goal when

designing with a focus on transparency. That is, trans-

parency is a parameter for controlling the relationship be-

tween humans and machines according to the designer’s

purpose. We then presented approaches to design HInt

systems with HMMA based on our guidelines. In this

approach, we proposed that there are two aspects of ma-

chine transparency (i.e., machine presence and machine

intervention) in human-computer systems, and we made

suggestions on how they should be designed based on

known mechanisms behind perceptual and action trans-

parency. To demonstrate the types of system designs that

our approach may be used for, we presented concrete ex-

amples of some HMMA systems. We analyzed them us-

ing our framework and assessed them using our design ap-

proach. Finally, we described further applications and ex-

tensions to our transparency-based design framework and

approach as well as future prospects for HInt and HMMA

systems.

Despite it being a preliminary framework, we believe

that our concept of transparency and its use in HMMA

design can provide designers of human-computer systems

with new insights into HInt design. Namely, we believe

that it provides a useful analogy and a clear description of

the factors that influence HInt and sheds light on the pos-

sibility of using the degree of fusion as a controllable pa-

rameter in a system to achieve desired effects. Ultimately,

we believe that this new framework will contribute to pro-

moting human augmentation by enabling human-machine

fusion through mutual action.
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